Как снизить вероятность ошибки первого рода при оценке доверительных интервалов для 3 групп и более?

При оценке различий 3+ групп с помощью p-значения одним из распространенных методов является поправка Бонферрони. В классическом варианте она заключается в уменьшении порога вероятности ошибки I рода α (альфа), с которым сопоставляется p, путем деления на число выполняемых сравнений между группами (обозначим его как k).

Например, у нас 3 группы исследуемых, и мы хотим сравнить их все попарно: 1 с 2, 1 с 3, 2 с 3. Получается, всего будет 3 попарных сравнения, k=3. Значит, если мы хотим оценивать различия групп с вероятностью ошибки I рода, не превышающей 5% (α=0.05), полученные p нужно будет сопоставлять не с 0.05, а с 0.05/3 = 0.017. Если p<0.017 — различия статистически значимы. Если p>0.017 — различия статистически незначимы.

А если мы оцениваем статистическую значимость различий не с помощью p, а с помощью доверительных интервалов (ДИ)? Нужно ли их корректировать?
Да! Причем для этого также подойдет поправка Бонферрони.

Например, мы рассчитываем для разности средних 95% ДИ, который соответствует α = 0.05, или 5%. Поправка Бонферрони применяется к α, которая также делится на k. Так, если мы выполняем 3 парных сравнения, 5%/3 = 1.7%. И для каждой разности средних нужно будет рассчитывать не 95% ДИ, а (100-1.7)% = 98.3% ДИ.

ДИ, скорректированные по Бонферрони, конечно, будут шире, чем исходные. Поэтому будет сложнее получить ситуацию, когда ДИ не пересечет границу нулевой значимости, и тем сложнее будет совершить ошибку I рода — ошибочно выявить различия, которых на самом деле нет. А значит, выводы станут более точными.

Есть ли примеры такой коррекции ДИ?
Сколько угодно! К этому посту подобрали 2 примера из научных статей:

1.В статье D.P.Bui et al. Veterans at High Risk for Post–COVID-19 Suicide Attempts or Other Self-Directed Violence (JAMA Netw Open. 2025;8(3):e250061. doi:10.1001/jamanetworkopen.2025.0061) авторы сопоставляли риски самоповреждающего поведения между 5 группами исследуемых. Все группы сравнивались попарно, поэтому k=10. Вместо 95% ДИ для отношения рисков рассчитывались (100-5/10) = 99.5% ДИ.

2.В статье R.Croop et al. Zavegepant nasal spray for the acute treatment of migraine…(Headache, 2022. 62(9):1153-1163. doi: 10.1111/head.14389) авторы сравнивали 3 экспериментальные группы пациентов, принимавших разные дозы препарата, с группой плацебо-контроля. Получилось всего 3 сравнения. Вместо 95% ДИ для частоты достижения конечных точек рассчитывались 98.3% ДИ.

Вначале кажется, что все правильно, однако на самом деле к этому примеру есть вопросы. Для оценки различий между группами здесь использовались p, а не ДИ. Зачем в таком случае корректировать ДИ — непонятно. Поправка применяется только для оценок значимости различий.

Например, в первом исследовании тоже рассчитывались частоты событий в каждой из групп, но при этом использовались обычные 95% ДИ.

Выводы:

  •  При определении ДИ для оценок различий между 3 и более группами, сравниваемых попарно, применяем поправку Бонферрони: рассчитываем (100-α/k)% ДИ.
  •  Поправку Бонферрони применяем к ДИ для оценок эффекта: относительного риска, отношений шансов, разницы средних, разницы рисков и т.д.
  •  К ДИ для описательных данных: средних значений показателя, частот события в каждой группе — поправку не применяем.

2 комментария на ««Как снизить вероятность ошибки первого рода при оценке доверительных интервалов для 3 групп и более?»»

  1. Аватар пользователя smorter giremal

    Thank you for another great post. Where else may just anyone get that type of info in such an ideal way of writing? I’ve a presentation next week, and I am at the look for such info.

    1. Аватар пользователя marapov
      marapov

      Here is a link to our telegram channel: https://t.me/medstatistic_ru

Добавить комментарий для marapov Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Новости

  • Статистическая программа StatTech обновилась до версии 4.7

    Самое главное — запущена реферальная программа! С её помощью можно будет получить большие скидки на приобретение доступа к StatTech. Вплоть до 100% от её стоимости! А ещё добавлены новые инструкции — по линейной и логистической регрессии, ROC-анализу, сравнению связанных групп (анализу до-после). Подробную информацию о новых функциях читайте по этой ссылке.


  • Новая версия StatTech — 3.0

    У нашей программы Статтех вышла новая версия! Обновление — долгожданное: до этого крайний раз обновлялись в июле. Обновление — объемное: появился такой обширный и важный функционал, который позволил нам присвоить этой версии новый номер — 3.0.